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IntrodutionIn bateria, gene regulation is traditionally thought of as an adaptive or homeostati mehanism that allowsthe ell to respond to hanging metaboli onditions or to environmental stresses (e.g., Wall et al (2004);Seshasayee et al (2009)). The underlying rationale is that proteins �should� be made only when needed soas to onserve ellular resoures or beause the protein's ativity is detrimental in other onditions. Thelassi example is the indution in Esherihia oli of the la operon in response to latose: the la operon isrequired for growth on latose, and the la operon is very weakly expressed in the absene of latose. If thela operon is arti�ially indued in the absene of latose by adding a non-metabolizable analog of latoseto the medium, then the expression of the la operon redues the growth rate. This redution in the growthrate re�ets the ost of produing useless proteins instead of useful ones (Stoebel et al , 2008) and also thedetrimental ativity of the LaY permease in some onditions (Eames and Kortemme, 2012). The relativeredution in E. oli's growth rate due to produing useless proteins seems to vary aross growth onditions,but under low-ost onditions, the ost is approximately the fration of total protein that is useless (Shahraiet al , 2010).Although many spei� examples of gene regulation appear to be adaptive under laboratory onditions,it is not lear whether the regulation of the majority of genes is adaptive. Genome-wide studies in bothbateria and yeast have found little orrelation between hanges in expression and the importane of genesfor �tness (Deutshbauer et al , 2011; Giaever et al , 2002; Birrell et al , 2002; Smith et al , 2006). In otherwords, most genes are not down-regulated when they are not needed for growth, and onversely, most genesthat are up-regulated do not seem to be important for �tness. This is surprising beause under a ost-bene�tmodel of optimal expression (Dekel and Alon, 2005), the optimal expression level of a gene will be muhlower if there is little or no bene�t (or �tness advantage) than if there is a large bene�t. Thus, there is apuzzle as to why adaptive regulation does not seem to be more widespread in bateria.There have been several proposals for why genes might be expressed when they are not needed for �tnessor why they might not be indued when they are needed. More preisely, these theories try to explainwhy bateria with apparently non-adaptive regulation have not been out-ompeted by other bateria withmore optimal regulation. First, some genes might be expressed in �standby mode� beause they will helpthe baterium survive if onditions hange (Fisher and Sauer, 2005). Standby ontrol an be thought ofas a way to redue the delay inherent in adaptive ontrol. If a gene is under adaptive ontrol and is notexpressed at all when it is not needed, then after onditions hange and it beomes needed, there is a delayuntil enough of the protein is produed to adapt to this new ondition. During this delay, the ell might stopgrowing or might even die. Thus, unertainty about the near future implies some possibility of a bene�t fromexpressing a gene that is not urrently needed. If there is a signi�ant hane of obtaining a bene�t in thefuture then the average future bene�t will exeed the (ertain) ost of expressing unneeded protein, so theoptimal expression level will be above zero even though the gene urrently onfers no bene�t. Conversely, ifthe gene is urrently needed but onditions might hange in the near future, this redues the expeted bene�tof high expression, and hene redues the optimal expression level. In other words, optimal standby ontrolshould dampen the dynami range of expression without hanging the pattern. (For a detailed example, seeSupplementary Figure 1.) Thus, optimal standby ontrol annot explain why there is so little orrelationbetween relative expression (i.e., when genes are up-regulated) and mutant �tness (i.e., when they are neededfor optimal growth).A seond and related theory is that proteins that are only needed in small amounts might be expressedonstitutively beause the ost of adaptive ontrol, suh as the ost of making transription fators, mightexeed the bene�t of making less of the protein when it is not needed (Wessely et al , 2011). The ost ofregulation seems small � for example, the LaI repressor is present at only 20-50 opies per ell (Milo et al ,2010) � so this theory should only apply to weakly-expressed genes that have a low ost of unneessaryexpression.A third theory related to hanging onditions is that miroorganisms might use one environmental signalto �antiipate� another (Tagkopoulos et al , 2008; Mithell et al , 2009). Here the hange in environment is(somewhat) preditable, rather than being entirely random. For example, for a gut baterium like Esherihiaoli, a rise in temperature might indiate that it has been ingested and will soon reah an anaerobi environ-ment (Tagkopoulos et al , 2008), so genes for anaerobi respiration might be indued even though they arenot immediately useful. It is not lear whether antiipatory ontrol of expression is widespread in bateria.2



Fourth, horizontally transferred genes, whih are ommon in bateria, might lak regulation beause ofinsu�ient time to evolve appropriate regulation in their urrent host (Lerher and Pal, 2008). However,only the most reently-transferred genes seem to lak regulation (Lerher and Pal, 2008). Also, regulationan evolve quikly (Stone and Wray, 2001; Berg et al , 2004), regulation an be onserved aross transferevents (Prie et al , 2008), and many horizontally transferred genes are under omplex ontrol by multipletransription fators (Prie et al , 2008). Thus, we doubt that horizontal gene transfer ould explain whythere is little orrelation between relative expression (i.e., regulation) and mutant �tness genome-wide.Fifth, the regulation of some genes might be suboptimal or maladaptive beause the expression patternsof those genes are not under strong seletion. More preisely, if altered regulation improves relative growthby less than 1/Ne per generation, where Ne is the e�etive size of the baterial population and the e�eton growth is averaged aross natural environments, then this altered regulation is unlikely to take over thepopulation. Seletively-neutral evolution ould also aount for some of the omplexity of gene regulation(Lynh, 2007). However, both regulatory sites (Rajewsky et al , 2002; MCue et al , 2002) and the oexpressionof genes (Prie et al , 2007) are usually onserved between losely-related bateria, whih implies that theregulation of most genes is under some seletion. Furthermore, in E. oli, over half of all genes are presentat above 0.1 mRNA per ell in a single ondition, whih orresponds to 30-60 proteins per ell (Lu et al ,2007) or over 1 in 100,000 of all protein moleules in the ell (Milo et al , 2010). Beause the �tness ost ofunneessary expression of a gene is probably at least as great as its proportion of total protein, this impliesthat the �tness ost of unneessary expression of the typial gene is at least 10−5 per generation. This isabout the same as the estimated �tness ost of mutations in odon usage that are under seletion (Bulmer,1991). Thus, unneessary expression of the typial protein should be under seletion.Finally, we propose that non-adaptive regulation is widespread in bateria, at least in laboratory settings,beause of two major fators. Firstly, baterial genomes enode far more operons than regulators. In thetypial baterium, only 4.2% of proteins are predited to be transription fators (Charoensawan et al ,2010). With so few regulators, most genes are probably regulated by fators that are not diretly related totheir funtion. We all this mode of regulation indiret ontrol. As an example, baterial genes are oftenregulated by �global� transription fators that regulate diverse and sometimes funtionally-unrelated genes(Martinez-Antonio and Collado-Vides, 2003). Seondly, baterial regulatory systems have evolved under verydi�erent onditions than those being tested in the laboratory. If the utility of a gene's ativity orrelateswith a funtionally-unrelated signal, then regulation by that signal will be seleted for in the wild, but thisorrelation will probably not be maintained in arti�ial onditions. So we do not expet indiret ontrol thatevolved in the wild to be adaptive under arti�ial onditions. In ontrast, if there is a diret regulatory linkbetween an environmental signal and the physiologial response, as with the la operon, then the regulatorysystem an perform well outside of the onditions that it evolved under.To test these various theories of baterial gene regulation, we olleted genome-wide mutant �tnessdata and gene expression data from the metal-reduing baterium Shewanella oneidensis MR-1 aross 15mathing onditions. We also examined large ompendia of (unmathed) �tness and expression data forthis baterium. We found that 24% of genes are detrimental to �tness in some laboratory onditions, whihshows that the regulation of many genes is maladaptive in the laboratory. We on�rmed that the orrelationbetween relative expression and mutant �tness is weak, as in our previous study with just four onditions(Deutshbauer et al , 2011). We ruled out some tehnial explanations for the weak orrelation, suh asgrowth phase e�ets on expression, subtle variations in experimental onditions, or geneti redundany dueto paralogs, and we found little evidene of antiipatory ontrol. As evidene of indiret ontrol, we showthat many genes are expressed onstitutively instead of being ontrolled by transription fators, or areregulated by growth rate. Furthermore, for many genes, this regulation seems to be suboptimal and annotbe explained by standby ontrol. We also show that genes with losely-related funtions an have ratherdi�erent expression patterns, whih suggests that some of them are not under diret ontrol.To test the generality of our �ndings, we examined the expression and mutant �tness of biosyntheti genesin four diverse bateria � S. oneidensis MR-1, E. oli K-12, the ethanol-produing baterium Zymomonasmobilis ZM4, and the sulfate-reduing baterium Desulfovibrio alaskensis G20. In E. oli, biosyntheti genesthat were required for �tness in minimal media but not in rih media were almost all down-regulated inminimal media, but in the other three bateria, this was often not the ase. We also ompared �tness andexpression data for Z. mobilis ZM4 aross 18 mathing onditions, and found little orrelation between relativeexpression and mutant �tness in Z. mobilis ZM4. We onlude that suboptimal regulation is widespread in3



bateria, at least under laboratory onditions.ResultsMany genes are detrimental to �tness in some onditionWe olleted genome-wide data on mutant �tness and mRNA abundane for S. oneidensis MR-1 grown in15 mathing onditions: Luria-Bertani medium (LB), a de�ned minimal medium with one of eight di�erentarbon soures added, minimal latate medium with one of four di�erent stresses, or anaerobi respirationof fumarate with two di�erent eletron donors. For eah ondition, we measured �tness using two pools ofmutants that grew for 6-8 generations and we measured gene expression from wild-type ells in exponentialphase (see Supplementary Figure 2 for an overview). To ensure that the growth onditions were idential,mathed �tness and expression experiments were onduted at the same time. We obtained both expressionand �tness data for 3,247 of the 4,467 protein-oding genes in the genome. Of the protein-oding genes thatwe do not have data for, 69% (836/1,220) are essential for growth in LB, are under 300 nuleotides, or arerepetitive elements suh as transposases. The mutant �tness for eah gene represents the hange, aross 6-8generations of growth, in the log2 abundane of strain(s) with transposons inserted within that gene. The�tness values are normalized so that wild-type would have a �tness value of about zero: negative �tnessindiates that the mutant strain is sik (relative to wild-type) and that the gene's ativity is important forgrowth in that ondition, while positive �tness indiates that the mutant strain has an advantage and thatthe gene's ativity is detrimental in that ondition.A few genes are strongly detrimental to �tness during aerobi growth on latate: strains with insertionsin these genes grow better than most other strains and the gene's �tness value is above 0.75 (Figure 1A).Furthermore, strongly-detrimental genes tend to be well-expressed (Figure 1A). Similarly, in all 14 ondi-tions with strongly-detrimental genes, the majority of these genes are expressed above the median gene.(There are no strongly-detrimental genes in LB.) We also observed a larger number of genes with milderbut potentially-signi�ant detrimental ativity. As desribed previously, we used ontrol experiments toestimate the reliability of eah �tness measurement, whih we summarize using a standard normal z sore(Deutshbauer et al , 2011). Aross 15 onditions and 3,247 genes, we had 1,172 �tness measurements with
z > 2.5, while we would expet just 302 suh ases by hane (P (z > 2.5) ·3, 247 ·15 ≈ 302). For omparison,we had 5,034 �tness measurements of signi�antly sik genes (z < −2.5). In all onditions, the putativelydetrimental genes were more highly-expressed on average than other genes were (Figure 1B), and in 11 ofthe 15 onditions, this di�erene was statistially signi�ant (P < 0.05, binomial test). The high expressionof detrimental genes on�rms the �tness data, beause it is easier for a gene to exert a detrimental e�et if itis highly expressed. On the other hand, it is not lear why these genes are not down-regulated to eliminatetheir detrimental ativity.To examine this issue more broadly, we identi�ed genes that were detrimental to �tness in a ompendiumof 195 �tness experiments for S. oneidensis MR-1 (Deutshbauer et al , 2011). Beause we were interestedin genes that were detrimental to growth or survival, we removed eight experiments that measured motility,leaving us with 187 experiments. To inrease sensitivity and redue false positives, we grouped together�tness experiments that had similar patterns (pairwise orrelation above 0.75), giving 38 groups. Withineah group and for eah gene, we required an average �tness above 0.4 as well as statistial signi�ane fromombining z sores (P < 0.01 after Bonferonni orretion for the number of groups). 798 genes (24% of thegenes for whih we have �tness data) were signi�antly detrimental in at least one group of experiments.To validate these detrimental genes, we examined adjaent pairs of genes that are otransribed in the sameoperon. Genes in the same operon often, but not always, have related funtions (de Daruvar et al , 2002;Rogozin et al , 2002; Prie et al , 2006), so if one of them is detrimental to �tness then the other should moreoften be detrimental. Indeed, one gene in an operon pair was muh more likely to be detrimental to �tnessif the other one was (53% versus 17%, P < 10−15, Fisher exat test). This on�rms that most of these 798genes are genuinely detrimental to �tness in some of our laboratory onditions.These 798 genes that are detrimental to �tness are not simply sel�sh genes. They inlude a wide varietyof funtions, and they are not signi�antly depleted in any COG funtion ategory (Tatusov et al , 2001) orTIGR subrole (Peterson et al , 2001) (Fisher exat test, false disovery rate above 0.05). Just 30 of themare annotated as potentially sel�sh elements suh as transposases, prophages, or restrition systems. 4214



of the detrimental genes (53%) are important for growth or survival in another group of experiments inour ompendium (�tness under -0.4 and P < 0.01 after Bonferonni orretion). Some of the detrimentalgenes are involved in motility, whih is onsistent with previous reports (Deutshbauer et al , 2011; Langridgeet al , 2009; Koskiniemi et al , 2012) and might re�et our unnaturally well-shaken growth onditions. Butwe doubt that motility an aount for most of the detrimental genes. We previously measured mutantmotility in S. oneidensis MR-1 by assaying the abundane of mutant strains that reahed the outer ring ofa soft agar plate (Deutshbauer et al , 2011). (These are the same experiments that were removed from the�tness ompendium beause they did not measure growth or survival.) 34% of the 798 detrimental geneshave a motility ��tness� of under -0.4, as ompared to 13% of other genes. Although the detrimental genesare enrihed in motility genes (P < 10−15, Fisher exat test), motility and sel�shness together only explainaround a third of the detrimental genes. The regulation of the 421 genes that are sometimes detrimental andsometimes important for growth � 13% of the genes that we have �tness data for � is suboptimal, at least inour laboratory onditions, as these genes �should� be repressed when they are detrimental to growth.To test whether genes tend to be down-regulated when they are detrimental to �tness, we onsidered genesthat are likely to be detrimental to �tness in one of our 15 mathed onditions (z > 2.5) and ompared theirexpression in that ondition to their median expression aross all the onditions. We exluded prophagesand other potentially sel�sh genes from this analysis beause we observed the indution of 100 prophagegenes by over 4-fold in nalidixi aid, whih is probably a �sel�sh� response to DNA damage (Qiu et al ,2004). We did not �nd a signi�ant tendeny for genes to be downregulated when they are detrimental to�tness: the mean relative expression was 0.03 for detrimental genes and 0.06 for other genes (P > 0.1, t test;
n = 1,094 and 45,466, respetively). This shows that the detrimental ativity of most of these genes annotbe explained by optimal standby ontrol: under this model, if genes are expressed beause they might beneeded after a hange in onditions, then they should still be downregulated (Supplementary Figure 1).Relative expression is little orrelated with �tnessTo test if baterial gene regulation is adaptive genome-wide, we asked if genes are upregulated when they areneeded for �tness and downregulated when not needed for �tness. We �rst ompared di�erential expressionand the di�erene of mutant �tness between pairs of onditions. We performed 14 omparisons derivedfrom our 15 onditions, with aerobi growth in minimal latate media as the ommon ontrol. For example,Figure 2A shows a omparison of relative expression and di�erential �tness for aerobi growth in aetateversus latate. If there was a strong relationship between relative expression and �tness, then genes thatare more important for �tness on aetate than on latate (i.e., a �tness di�erene below zero) would alsobe upregulated (i.e., an expression log2 ratio above zero), and there would be a strong negative orrelationbetween di�erential �tness and relative expression. Instead, the orrelation is statistially signi�ant but isvery weak (r = −0.15, P < 10−15; Figure 2A). In all of the omparisons, the orrelation between di�erentialexpresion and �tness is weak (r = −0.15 to +0.11).We notied that biosyntheti genes tend to be expressed at lower levels on aetate than on latate, whilebeing important for �tness in both onditions. Spei�ally, 67 putative biosyntheti genes (Peterson et al ,2001) were important for �tness in latate and aetate (both �tness under -0.75) but not in LB (�tness above-0.4), and the average log2 levels of these genes was 1.1 in latate and -0.2 in aetate (P < 10−12, paired t test).Low expression of these genes on aetate might re�et the lower growth rate of S. oneidensis MR-1 on aetaterelative to latate, whih implies a lower �ux through biosyntheti pathways. After removing biosynthetigenes, the orrelation between di�erential �tness and relative expression is still very weak (r = −0.08). Thisanedote illustrates that genes that are important for �tness in both onditions might hange expressionbeause of varying �ux, so we foused on genes that are important for �tness in one ondition but not theother or on genes that are not important for �tness in either ondition.In most of the omparisons, genes that are important for �tness in just one of the two onditions do tendto hange expression in the expeted diretion (e.g., Figure 2B). However, over a third of these di�erentially-�t genes hange expression the �wrong� way (i.e., lower expression on aetate for genes that are importantonly on aetate or lower expression on latate for genes that are important only on latate). The twodistributions of expression hanges (for the two types of di�erentially-�t genes) overlap onsiderably, whihan be quanti�ed with the Kolmogorov D statisti, whih depends only on the relative ranks of the valuesand ranges from 0 for idential distributions to 1 for distributions that do not overlap. For aetate versus5



latate, D = 0.23. For all of our omparisons, there is onsiderable overlap in the distributions of relativeexpression between genes that are sik only in one ondition or only in the other (Figure 2C, D = 0.12 to0.71). In a few onditions, genes that are di�erentially important for �tness are just as likely to hangeexpression in the �wrong� diretion. For example, of 22 genes that are important for �tness with opperstress but not without it, 12 are downregulated on opper stress (Figure 2D).To test the ases where a gene's expression hanges in the opposite diretion than expeted given the�tness data, we examined the expression of adjaent genes that are in the same operon. For the omparisonbetween aetate and latate, there are 18 operon pairs in whih one or both genes are expressed more highlyin one ondition but are important for �tness only in the other ondition. For 12 pairs, the two genes showedthe same diretion of hange and for the other 6 pairs, both genes show little hange in expression (bothabsolute log2 ratios were under 0.5). Similarly, we tested operon pairs that inlude genes that are importantfor �tness with opper stress but not without it and are downregulated during opper stress. For six of sevenoperon pairs, both genes were downregulated during opper stress, and for the remaining pair, the expressionof both genes was little hanged on opper stress (both absolute log2 ratios were under 0.25). These �ndingson�rm the non-adaptive regulation of these genes.Conversely, many of the genes with large hanges in expression are not important for �tness in eitherondition. In the omparison of aetate and latate, of 114 genes that hanged expression by four-fold ormore, 70 (61%) have little e�et on �tness in either ondition (both �tness values between -0.4 and 0.4). Forall of our omparisons, this proportion was at least 60%, with a maximum of 87% for aid stress. To test thehanges in expression for the genes that are not important for �tness, we again examined the expression ofadjaent genes in operons. In 81% of ases (2,309 of 2,835), the other gene was upregulated or downregulatedin the same diretion and with an absolute log2 ratio of at least 0.5. By hane, we would expet this toour only 21% of the time (P < 10−15, χ2 test of proportions). (The expetation is 21% beause aross our14 omparisons, expression hanges by 0.5 or more in 42% of ases, and the hange will be in the orretdiretion in half of those ases.)It is possible that the hange in expression of these genes is adaptive beause these genes have subtle �t-ness bene�ts in one ondition but not the other. To test this, we examined genes without strong phenotypes(�tness between -0.4 and 0.4) and ompared the genes that were up-regulated by two-fold or more (relativeto the median aross our experiments) to genes that were down-regulated by any amount. One again weexluded prophages and other potentially sel�sh genes. The up-regulated genes had slightly lower average�tness than the down-regulated genes (-0.01 and +0.001, respetively; P = 0.0002, t test), but the distribu-tions were quite similar (D = 0.05). The two-fold up-regulated genes were about as likely to be signi�antlysik as the down-regulated genes: at a uto� of z < −2.5, whih orresponds to a false disovery rate of 32%for these genes with mild phenotypes, 2.2% of up-regulated genes and 1.9% of down-regulated genes weresigni�antly sik. (These proportions are not signi�antly di�erent: P > 0.2, Fisher exat test). Beauseit is di�ult to measure very small di�erenes in �tness, we annot rule out the possibility of subtle �tnessbene�ts of the up-regulated genes. However, beause the up-regulated genes have very similar phenotypes asthe down-regulated genes, and beause genes with stronger phenotypes show a modest orrelation betweenrelative expression and �tness, we suspet that the up-regulation of most of the genes without strong �tnessbene�ts is not adaptive.Another way to ask if gene regulation is adaptive is to look at the orrelation, for any given gene, betweenexpression level and mutant �tness aross the 15 onditions (see examples in Figure 3A). If a gene is morehighly expressed when it is important for �tness, then we should see a strong negative orrelation (e.g., tyrAin Figure 3A). Instead, the distribution of �tness-expression orrelations for all genes is about the same as ifwe shu�e the data and ompare a gene's �tness pattern to another random gene's expression pattern (Figure3B). The atual distribution is signi�antly di�erent from the shu�ed distribution (P = 0.01, Kolmogorov-Smirnov test) but the di�erene is slight, with average orrelations of 0.00 and 0.01, respetively.We used the �tness-expression orrelation of eah gene to test whether geneti redundany might bean explanation for why gene regulation does not appear adaptive. For example, if there are two partially-redundant genes whose ativity is important for �tness in a ondition, one of them might be upregulatedin that ondition, but knoking it out might have only a subtle phenotype beause the other gene is stillative. Suh redundany is often assoiated with paralogs (although paralogs in S. oneidensis MR-1 oftenhave detetable phenotypes when mutated (Deutshbauer et al , 2011)). We ompared the distribution ofexpression-�tness orrelations for 392 genes in our data set that have paralogs (above 30% identity) to the6



distribution for genes that lak paralogs and found little di�erene (means of 0.014 versus 0.002, P = 0.4, ttest). Thus, geneti redundany between paralogs does not explain the lak of a orrelation between relativeexpression and mutant �tness in S. oneidensis MR-1. Also, although we did not test geneti redundanymore broadly, geneti redundany annot explain why genes are often detrimental to �tness.Overall, when we ompare relative expression to di�erential �tness, either by seleting pairs of onditionsor by examining eah gene aross all 15 mathing onditions, we �nd that they are weakly orrelated. Thisstrongly suggests that the regulation of many genes is not adaptive under our laboratory onditions.Genes with lose funtional relationships are often not oregulatedTo on�rm that gene expression patterns are often not orrelated with a gene's funtion, we examined theoexpression of genes that have losely-related funtions but are not in the same operon. Using a ompendiumof 195 diverse �tness experiments for S. oneidensis MR-1 (Deutshbauer et al , 2011), we identi�ed 240 pairsof genes that were highly o�t (orrelation of �tness above 0.8), were annotated with the same TIGR subrole(Peterson et al , 2001), did not belong to the same predited operon (Prie et al , 2005; Dehal et al , 2009),and were not nearby eah other in the genome (not within 10 genes of eah other). When we examined theoexpression of these funtionally-related pairs aross 329 expression experiments for S. oneidensis MR-1, wefound that they have only a moderate tendeny to be oexpressed (Figure 3C). For example, 83% of operonpairs have a oexpression of 0.5 or higher, but just 43% of the 240 funtionally-related non-operon pairsdo. Furthermore, aording to gene regulation that was predited via omparative genomis and manuallyompiled in RegPreise (Novihkov et al , 2010), these funtionally-related pairs are usually not oregulated:of the 240 pairs, there is a regulatory predition for at least one gene among 97 pairs, and both genes arepredited to be regulated by the same transription fator in only 7 ases.To test this more arefully, we manually examined the 76 pairs of genes with a lose funtional relationshipbut little oexpression (r < 0.3). Thirty six of the 76 pairs had known funtional di�erenes or showeddi�erenes in �tness in a few onditions that might explain their limited oexpression (Dataset 2). Forexample, genes for both proline and arginine synthesis have the TIGR subrole �Amino aid biosynthesis:Glutamate family� and show similar �tness in most, but not all, of our onditions. It is not surprising thatthey might be regulated di�erently. These pairs re�et the limited resolution of the funtional lassi�ation.Another 18 pairs of genes were from �agellar operons �iKLMNOPQR-�hB, �gL1-�aG-�iD-SO_3234-�iS,�gFGHIJ-SO_3239.3-SO_3239.2-�gL2-�gL3, �gBCDE, and �gAMN. Some of the di�erenes in expressionof these genes might re�et the sequential ativation of di�erent stages of assembly of the polar �agellum,whih has been studied in detail in related bateria (e.g., (Prouty et al , 2001; Dasgupta et al , 2003)). InPseudomonas aeruginosa, seven of these 18 pairs of genes are o-regulated and are in the same �lass�of transripts (Dasgupta et al , 2003), so it is not lear that these genes are needed at di�erent times.The remaining 22 pairs of genes were from operons with losely-related funtions for whih there was noapparent reason for the expression to di�er. Spei�ally, these pairs of genes were from aromati amino aidsynthesis operons aroA, aroC, aroE, aroQ, and aroKB; menaquinone synthesis operons menA, menB, menF,and menDHCE; branhed-hain amino aid synthesis operons ilvGMDA, ilvC, and ilvE; pyrimidine synthesisgenes pyrC, pyrD, and pyrF; methionine synthesis operons metBL and metC; lipid A synthesis genes lpxLand lpxM; mismath repair genes mutL and mutS; and hromosome separation genes xerC and xerD. Amongthese genes, mutL, pyrD, pyrF, and xerC are in operons with funtionally-unrelated genes, while the othergenes listed individually are transribed separately, as determined using high-resolution �tiling� miroarraysand 5'-end RNA sequening (see Materials and methods).If gene regulation evolves to an optimum, then it is di�ult to explain why the regulation of thesefuntionally-related genes or operons would be di�erent, espeially for genes that are not otransribedin operons with funtionally-unrelated genes. One possibility is that for pathways that have a low ostof expression, the �rst and last steps of a pathway should be regulated while the middle steps should beexpressed onstitutively � this an be an e�ient way to transriptionally ontrol the �ux through thepathway as demand for its produt hanges (Wessely et al , 2011). However, a low ost of expression requiresa low level of expression and also that the gene's ativity should not be detrimental to �tness. Instead, wefound that the genes in these pairs tend to be more highly expressed on average than other genes (P < 0.002,
t test, using the median expression of eah gene aross our 15 onditions) and that they are more likely tobe detrimental to �tness than other genes (P = 0.005, Fisher exat test). Overall, the lak of oexpression7



for these genes with losely-related funtions appears to be suboptimal, but it is di�ult to rule out otherexplanations.Suboptimal ontrol via onstitutive or growth-rate regulation of many genesOne explanation for why there is little orrelation between �tness and expression is that some genes areexpressed onstitutively and are not under adaptive regulation. Using a ompendium of 329 expressionexperiments for S. oneidensis MR-1, we identi�ed 641 putative onstitutive genes (17% of the genes withexpression data) that have relatively onstant patterns of expression. Aording to RegPreise preditions(Novihkov et al , 2010), these genes are muh less likely than other genes to be regulated by spei� tran-sription fators or by speialized sigma fators (3.6% versus 16.1%, P < 10−15, Fisher exat test). Thissupports the idea that these onstitutive genes are not subjet to adaptive ontrol.We also hypothesized that many genes would be regulated by growth rate, beause at higher growthrates, a higher proportion of ellular resoures are devoted to transription and translation (Bremer andDennnis, 1996). By looking for genes that were o-expressed with omponents of the ribosome, we identi�ed391 genes (10% of the genes with expression data) as putatively growth-regulated. We on�rmed that thesegenes tend to be regulated by growth, via the stringent response, by examining their promoter sequenes(see Materials and methods).Constitutive and growth-regulated genes are funtionally diverse, and most types of funtions are repre-sented in both sets. For onstitutive genes, the only TIGR subrole that is signi�antly depleted is eletrontransport (false disovery rate under 0.05, Fisher exat test). For growth-regulated genes, the only TIGRsubrole that is signi�antly depleted is anion transport (false disovery rate under 0.05).Not surprisingly, onstitutive genes and growth-regulated genes do not show a orrelation between �tnessand expression: aross our 15 mathing onditions, the two groups have mean �tness-expression orrelationsof 0.01 and 0.00, respetively (both P > 0.5, t test). Together these aount for 21% of the genes for whihwe have both �tness and expression data, so onstitutive or growth-regulated expression ould explain thelak of adaptive ontrol for many genes.These genes might lak adaptive ontrol beause the bene�t of regulation would be lower than the ost ofmaking transription fators to regulate them. In this ase, expressing them when they are not important for�tness should not be ostly, so they should be weakly expressed and their ativity should not be detrimentalto �tness. However, 49% of growth-regulated genes and 28% of onstitutive genes are detrimental to �tnessin some onditions. Furthermore, detrimental genes are more likely than other genes to be growth-regulatedor onstitutive (P = 10−12 and P = 0.03, respetively, Fisher exat test). Many of the growth-regulateddetrimental genes are involved in motility, whih might not be detrimental under more natural onditions.After removing genes that are important for motility (i.e., motility ��tness� < −0.4), detrimental genes arestill more likely than other genes to be onstitutive or growth-regulated (24% vs. 16%, P < 10−4, Fisherexat test). We did �nd that onstitutive genes are unlikely to be highly expressed: for example, using themedian expression in our mathing onditions, only 6% of onstitutive genes are expressed two-fold above themedian gene, while 27% of other genes are (P < 10−15, Fisher exat test). 278 of the onstitutive genes (54%of them, or 9% of the genes that we have data for) are expressed less than two-fold above the median genein all of our mathing onditions and are also not detrimental to �tness in our ompendium. Constitutiveexpression of these genes might be due to the high ost of regulation. In ontrast, growth-regulated genestend to be highly expressed, with a median expression in our 15 mathing onditions that is roughly 3-foldhigher than for other genes (P < 10−15, Wiloxon test). Thus, we found that many of the onstitutive genesand most of the growth-regulated genes have a high ost of expression, whih is not onsistent with theost-of-regulation theory.Another potential rationale for growth regulation is that these genes have onsistent but subtle defetsin growth. In other words, they might always be bene�ial to express, but not essential. However, manualexamination of our �tness ompendium suggested that growth-regulated genes tend to have variable pheno-types. Consistent with this, aross 187 �tness experiments, growth-regulated genes tended to have a highstandard deviation of �tness, with the average of the standard deviations being 0.87 for growth-regulatedgenes and 0.43 for other genes (P < 10−15, t test).Overall, we found that funtionally-diverse genes are expressed onstitutively or are regulated by growthrate. Some of these genes are onstitutively expressed at low levels without being detrimental to �tness, so8



that there might not be a su�ient bene�t for adaptive ontrol to evolve. But many other onstitutive orgrowth-regulated genes have a high ost of expression and have phenotypes that vary aross onditions, sotheir regulation appears to be suboptimal.Amino aid synthesis and ataboli pathways aount for most of the genes underadaptive ontrolTo try to identify a subgroup of genes in S. oneidensisMR-1 that might show more orrelation between �tnessand expression, we onsidered only the 832 genes that strongly a�et �tness in at least one of our 15 mathingexperiments (maximum |�tness| > 0.75). As shown in Figure 3D, among genes that a�et �tness, onstitutiveand growth-orrelated genes still show no �tness-expression orrelation (both P > 0.4, t test), but some ofthe other genes do (mean -0.11, P < 10−13, t test). Of the other genes that a�et �tness (not inludingonstitutive or growth-regulated genes), 16% have strong negative �tness-expression orrelations of under-0.5 and are probably under adaptive ontrol. Many of these genes are involved in amino aid biosynthesis(Figure 3E). For example, of the 60 genes with a �tness-expression orrelation under −0.5 and an annotatedTIGR subrole, 31 (52%) were involved in amino aid biosynthesis. No other funtional ategory was enrihedin genes with strong �tness-expression orrelations, but 11 of these genes are involved in the atabolism of thearbon soures we used (fadAB, deoC, gnd, edd, zwf, astB, nagABK, and SO_3774). Amino aid synthesisand ataboli genes might be regulated adaptively beause the onentrations of internal metabolites providesimple indiators of whether their ativity is likely to be bene�ial, beause their importane for �tness variesstrongly aross onditions, or beause unneessary expression of these genes is partiularly deleterious.We also onsidered the hypothesis that the regulation of genes that are more highly expressed would beunder stronger seletion and hene that highly-expressed genes would be more adaptively regulated. Genesthat are more highly expressed tend to have a stronger (more negative) expression-�tness orrelation, but thee�et is weak (Spearman rank orrelation = -0.11, P < 10−9). We then onsidered only the �well-expressed�genes that have a phenotype in at least one of our mathed onditions and whih do not a�et motility. Morepreisely, we onsidered genes that have a median expression, aross our 15 mathed onditions, of at leasttwo-fold above the median gene. Then we removed genes that have �tness between -0.75 and +0.75 in all ofour mathed onditions or have motility ��tness� under -0.4. Of the remaining 76 genes, 35 are biosynthetigenes that are important for �tness in minimal media, and the median expression-�tness orrelation of thesebiosyntheti genes is -0.49. For the remaining well-expressed genes, the median expression-�tness orrelationis just -0.08, whih is signi�antly weaker than for the well-expressed biosyntheti genes (P < 0.001, Wiloxonrank sum test) and is about the same as for the less-expressed genes that have phenotypes (median -0.07;
P > 0.5, Wiloxon test). Overall, high expression does not seem to be a strong indiator of whether a gene'sregulation will be adaptive in the laboratory.Little evidene for antiipatory ontrolAnother possible explanation for the weak orrelation between expression and �tness is that the baterium isantiipating growth in a di�erent environment (Tagkopoulos et al , 2008; Mithell et al , 2009). We systemat-ially looked for evidene of antiipatory ontrol by onsidering all pairs of our onditions. Given onditionsA and B, if the organism uses A to antiipate B, then genes that are required for growth on B but not on Ashould be upregulated on A (relative to a ontrol ondition) as ompared to genes that are not required forgrowth in either ondition. We used the median expression aross the 15 onditions as the ontrol and testedthe 203 pairs of onditions that have at least 10 di�erentially-�t genes. We found only two ases of potentialantiipation that were statistially signi�ant (P < 0.01, Wiloxon test with Bonferonni orretion).The most signi�ant e�et was that growth on CAS, a mixture of amino aids, �antiipated� growthon gelatin (orreted P < 10−8). Rather than being a form of antiipatory ontrol, we suspet that S.oneidensis MR-1 annot distinguish growth on the peptides in gelatin from growth on amino aids, so itexpresses genes for taking up peptides whenever amino aids are present. Of the 15 genes that were sik ongelatin but not on CAS and that were up-regulated two-fold or more on CAS, three are involved in peptideuptake (SO_1822, SO_3194.1, and SO_3195). These may be examples of indiret ontrol.The other signi�ant e�et was that aerobi growth on pyruvate antiipated anaerobi growth on N-aetylgluosamine (NAG) with fumarate as the eletron aeptor (orreted P < 10−6). Of 33 genes that9



are important for �tness with NAG/fumarate but not on pyruvate, 7 genes were up-regulated by 1.5-fold ormore on pyruvate. Three of these genes form a hydrogenase operon (SO_2099:SO_2097) that is preditedto be regulated by Crp and Fnr (Novihkov et al , 2010), and three of the other four genes are predited to beregulated by Crp or Fnr (mC, mA, and mH). Crp and Fnr are both regulators of anaerobi respirationin this organism (Sa�arini et al , 2003; Cruz-Garía et al , 2011), and both the Crp and Fnr regulons areupregulated on pyruvate (both P < 10−8, t test) so we speulate that oxygen levels might drop during bathaerobi growth on pyruvate. Alternatively, there may be another signal for these regulators.Broadly, we found little evidene of antiipatory ontrol in S. oneidensis MR-1 aross our 15 onditions.A theoretial analysis of antiipatory ontrol suggests that, under a wide range of parameters, optimalantiipation involves a small response (relative to the response when the antiipated ondition atuallyours) (Mithell and Pilpel, 2011). So our results should not be seen as evidene that antiipatory ontrol isnot ouring; rather, they suggest that antiipatory ontrol does not strongly a�et genome-wide expressionpatterns and annot explain why we observe little orrelation genome-wide between mutant �tness andrelative expression.Variation in expression during the growth phase does not explain the lak oforrelation with �tnessAnother potential reason for low agreement between relative expression and mutant �tness is that we mea-sured expression at one time during the growth urve (in mid-exponential phase), while our �tness datare�ets the importane of the gene throughout the growth urve. For example, if a gene is important forthe early adjustment to growth in a new ondition but not afterwards, then at the end of the experiment,the mutant strains would have redued abundane and the gene's �tness would be negative, yet it wouldbe adaptive for the gene to be less-expressed in mid-exponential phase. In a previous study we examinedgrowth urves for 48 S. oneidensis MR-1 mutants with a variety of �tness values (Deutshbauer et al , 2011).Just two mutants grew at a normal rate but with a long lag, and most �tness defets were re�eted in thegrowth rate during mid-exponential phase. Beause most genes that a�et �tness are important for growthduring exponential phase when we olleted samples for gene expression, growth phase e�ets are unlikelyto explain why there is little orrelation between expression and �tness.To more diretly test how the relationship between expression and �tness might vary with the growthphase, we measured expression at various points in time during bath growth in rih media (LB) or inde�ned medium with latate or N-aetylgluosamine (NAG) as the arbon soure. The orrelation betweendi�erential expression and �tness (omputed as in Figure 2A) varied aross time points, but was neverdramatially tighter than in our original experiments. For latate versus LB, the original orrelation was
−0.11 and the best orrelation during the time ourse was −0.25; for latate versus NAG, the originalorrelation was −0.06 and the best was −0.11; and for NAG versus LB, the original orrelation was −0.25and the best (during the time ourse) was −0.21. The orrelation between di�erential expression and �tnessalso remained moderate if we used the maximum expression of eah gene during eah time ourse. (Theorrelations were −0.18 for latate versus LB, −0.06 for latate versus NAG, and −0.14 for NAG versus LB,respetively.) Thus, the time at whih we measured expression does not explain the low orrelation betweendi�erential expression and �tness.Repression of biosyntheti pathways in rih media is not the normTo extend our analysis to diverse bateria, we ompared the expression and �tness of biosyntheti genesbetween rih and minimal media in four organisms: Esherihia oli K-12, Shewanella oneidensis MR-1,the ethanol-produing baterium Zymomonas mobilis ZM4, and the anaerobi sulfate-reduing bateriumDesulfovibrio alaskensis G20. As shown in Figure 4, auxotrophi genes � genes that are annotated inbiosyntheti pathways (Peterson et al , 2001) and are important for �tness in minimal media but not in rihmedia � tend to be upregulated on minimal media in E. oli K-12 and in S. oneidensis MR-1, with averagelog2 ratios of 1.5 and 0.84, respetively (P < 10−15 and P < 0.001, t test). However, in Z. mobilis ZM4 andin D. alaskensis G20, auxotrophi genes are not upregulated in minimal media (both P > 0.3, t test).Surprisingly, in S. oneidensis MR-1, 28 of the auxotrophi genes are down-regulated in minimal media,and 15 of these are involved in nuleotide synthesis. These genes are sattered aross 11 di�erent operons10



� guaBA, purC, purEK, purF, purHD, purL, purMN, pyrC, pyrD, pyrE, pyrF � so this pattern has evolvedindependently many times. pyrD and pyrE are in operons with funtionally-unrelated genes, but there is noobvious reason why the other nine operons are not regulated by nuleotide availability. The expression timeourses for LB, latate, and NAG on�rm that the 15 nuleotide synthesis genes are more highly expressedduring log phase growth in LB � whih ontains nuleotides � than at any phase of growth in de�ned media.Although mutants in guaBA do show a mild growth defet in LB, whih suggests that their ativity might berequired, mutants in the other nuleotide synthesis genes do not. Thus, in S. oneidensisMR-1, the expressionof nuleotide synthesis genes does not respond to the availability of nuleotides or the ell's requirements forthese genes.We propose that E. oli K-12 has evolved diret regulation of biosyntheti pathways by the relevant endproduts so that it an e�iently utilize many di�erent arbon soures, inluding amino aids and nuleotides.In partiular, the swith between degrading and synthesizing these ompounds may require regulation toavoid futile yles in metabolism. In ontrast, S. oneidensis MR-1 is adapted for utilizing amino aids butnot nuleotides: it does grow on DNA or on a few nuleosides as arbon soures, but more slowly thanon peptides, and it annot utilize nuleobases (Serres and Riley, 2006; Pinhuk et al , 2008). A genome-sale metaboli model suggests that during growth on adenosine, deoxyadenosine, or inosine, it degradesthe ribose or deoxyribose portion and seretes the nuleobases (Pinhuk et al , 2010). If S. oneidensis MR-1is not adapted to utilizing nuleobases, this might explain why it does not ontrol the expression of thesesynthesis pathways by nuleotide availability. Finally, Z. mobilis ZM4 and D. alaskensis G20 do not, as faras we know, use amino aids or nuleotides as arbon soures and may not have enountered high levels ofamino aids or nuleotides often enough for transriptional regulation of these pathways in response to thoseompounds to be seleted for. Overall, we found that biosyntheti pathways are often not downregulatedwhen their end produts are available.Little orrelation between relative expression and �tness in Zymomonas mobilisZM4To test the relationship between relative expression and �tness in another baterium in diverse onditions,we olleted mutant �tness data and gene expression data for Zymomonas mobilis ZM4 aross 18 onditions.As Z. mobilis ZM4 an only use a few sugars as arbon soures, we studied growth in rih and minimalmedia and in various stresses. First, we examined relative expression and di�erential �tness between pairsof onditions, with growth in rih media as the ommon ontrol ondition. Aross 17 omparisons, themedian orrelation between relative expression and di�erential �tness was just -0.01, so there was littletendeny for genes that were more important for �tness to be upregulated. (The only ondition with aorrelation under -0.1 was ethanol stress, with a orrelation of -0.22.) Seond, unlike in S. oneidensis MR-1,in Z. mobilis ZM4 there was no signi�ant di�erene between the distribution of per-gene �tness-expressionorrelations and the shu�ed distribution (P > 0.5, Kolmogorov-Smirnov test with 1,568 genes and 1,568ontrols). The mean orrelations were 0.007 and 0.006, respetively. After removing genes without �tnesse�ets, onstitutively-expressed genes, and growth-regulated genes, the mean orrelation remained at 0.007.Overall, the orrelation between expression and �tness was weaker in Z. mobilis ZM4 than in S. oneidensisMR-1, whih might re�et the rather arti�ial onditions we used, less areful mathing of the experimentalonditions for the two assays, or a simpler regulatory system � Z. mobilis ZM4 has just 65 transriptionfators while S. oneidensis MR-1 has 243.DisussionWe have shown that in diverse bateria, there is little orrelation between when genes are important for�tness and when they are more highly expressed. The lak of orrelation does not result from a mismathbetween when we measured expression and when we measured �tness or from geneti redundany betweenparalogs. In S. oneidensis MR-1, adaptive ontrol seems to be rare exept for amino aid synthesis andarbon soure atabolism, and nuleotide synthesis is not under adaptive ontrol. In Z. mobilis ZM4 and inD. alaskensis G20, few of the biosyntheti genes are under adaptive ontrol, as their expression levels do notinrease in minimal media. In ontrast, in E. oli, most biosyntheti genes, of all types, are downregulated11



in rih media. Our results do not seem onsistent with the traditional view that most of baterial generegulation is adaptive. We speulate that the traditional view is an over-generalization from the adaptiveregulation of well-studied biosyntheti and ataboli pathways in E. oli and Baillus subtilis. Instead, ourresults suggest that indiret ontrol is widespread and that it leads to suboptimal expression patterns.Suboptimal ontrol in the laboratoryWe have shown that the misregulation of many genes is detrimental to �tness and hene is suboptimal in thelaboratory. 24% of genes in S. oneidensis MR-1 are signi�antly detrimental for �tness (above 0.4) in someonditions. Furthermore, detrimental genes tend to be highly expressed, and genes are not downregulatedwhen they are detrimental (as would be expeted under a model of optimal standby ontrol). A hangein log2 abundane of 0.4 aross seven generations orresponds to a �tness advantage of 4% per generation(20.4/7 ≈ 1.04). This is far too large a bene�t from mutating a gene to be explained by the waste of ellularresoures in making unneeded protein. (Few if any proteins aount for 4% of total expression.) Thus, theativity of many baterial proteins imposes signi�ant �tness osts in the laboratory, even at wild-type levelsof expression.Beause we measured mRNA levels and not protein levels, we annot test whether post-transriptionalregulatory mehanisms are adaptive. However, if post-transriptional regulation were operating optimally,then it would eliminate the detrimental ativities of proteins. Furthermore, in bateria, repressing transla-tion often destabilizes the mRNA (Deana and Belaso, 2005), so regulation of translation would a�et themRNA levels that we measured. Finally, in E. oli, genes with high mRNA expression tend to have highprotein expression (Lu et al , 2007; Taniguhi et al , 2010), whih implies a signi�ant ost of unneessaryexpression even if the protein is inative. Thus, post-transriptional regulation annot explain why muh oftransriptional regulation appears to be suboptimal.In the laboratory, suboptimal ontrol seems to be more ommon than adaptive ontrol (Figure 5). Amongthe genes from S. oneidensisMR-1 that we have data for, about 8% are onstitutively lowly expressed, are notdetrimental to �tness, and do not have a strong orrelation between mutant �tness and relative expression.These genes might lak adaptive ontrol beause the ost of regulation would not be worth it. Another 8%of genes are detrimental to �tness but are important for motility, whih is probably an adaptive lifestyle inthe wild but not in the laboratory. Another 1% of genes are detrimental to �tness and are potentially sel�shelements suh as prophages or transposons � �sel�sh� regulation of these genes may bene�t the genes and notthe host. Together, these three explanations aount for just 17% of genes that we have data for. Another5% of genes have strong �tness-expression orrelations and are probably under adaptive ontrol. In ontrast,48% of genes are under suboptimal ontrol, at least in our laboratory onditions: they are either detrimentalto �tness, without being explained by motility or sel�shness, or they are strongly up- or down-regulatedbetween onditions without being important for �tness in either ondition (Figure 5). Another 23% of geneshave little phenotype or hange in expression in our onditions, so we annot determine if their ontrol isadaptive or not. The remaining 7% of genes had phenotypes in our mathed onditions but their expressionwas neither strongly adaptive nor strongly suboptimal. As they had a mean �tness-expression orrelationof +0.01 (whih is not signi�antly di�erent from zero, P > 0.4, t test), we suspet that the regulation ofmany of these genes is suboptimal as well.Suboptimal ontrol in the wildAording to our model of indiret ontrol, gene expression responses will be more adaptive if examinedunder natural onditions than in the laboratory. Intuitively, we are onfusing the bateria by growing themin unfamiliar onditions suh as high nutrient levels, high ell densities, pure arbon soures, no ompetitionfrom other miroorganisms, and no predation. Also, indiret ontrol may have evolved beause of orrelationsbetween environmental parameters that our in the wild but not in our laboratory experiments. Measuringgene expression during slow growth at low ell densities in the presene of other miroorganisms seemshallenging. Nevertheless, given the rapid rate of improvements in DNA and RNA sequening, we hope thatit will soon beome feasible.Although we predit that baterial regulation will perform better under natural onditions, several fea-tures of baterial gene regulation seem likely to be suboptimal in the wild as well. First, we found many ases12



where genes with losely-related funtions had rather di�erent expression patterns. Although this appearssuboptimal, for pathways with a low ost of expression, it an be optimal for some steps to be onstitutiveand some steps to be regulated (Wessely et al , 2011). Beause the genes in our ases tended to have a highost of expression, this theory does not seem to apply, and we believe that the regulation of these genes issuboptimal. However, there ould be other explanations that we have not onsidered. Seond, many oper-ons ontain funtionally-unrelated genes, whih seems suboptimal (de Daruvar et al , 2002; Rogozin et al ,2002; Prie et al , 2006). In the stomah baterium Heliobater pylori, operons onsist predominantly offuntionally unrelated genes (Prie et al , 2005; Sharma et al , 2010). Third, although operons tend to beonserved aross related bateria (Wolf et al , 2001; Ermolaeva et al , 2001), operons are rarely onservedbetween distantly-related bateria, even if they ontain funtionally-related genes (Itoh et al , 1999). Whenoperon strutures hange, gene expression patterns hange as well, so it seems unlikely that gene regulationis optimal both before and after the hange (Prie et al , 2006). Fourth, theoretial analysis of the transrip-tional regulation of biosyntheti pathways suggests that the optimal design is for them to be regulated bytheir end produt, but many pathways are instead regulated by transription fators that sense metaboliintermediates (Chubukov et al , 2012). This seems suboptimal and is also onsistent with our proposal thatsensors for the optimal signals might not be available.Indiret ontrolWe proposed that the low orrelation between relative expression and mutant �tness re�ets indiret ontrolof most genes by fators that are unrelated to the funtion of the gene. We presented more evidene againstalternative models than evidene for indiret ontrol, but we do have two �ndings that argue for indiretontrol. First, many genes, with diverse funtions, are expressed onstitutively or are regulated by growthrate. As a lass, these genes show no orrelation between relative expression and mutant �tness. Seond,genes with a lose funtional relationship often have rather di�erent expression patterns if they are not inthe same operon; thus, these genes are probably not regulated by the same signals.We proposed that indiret ontrol ours partly beause of the limited number of regulators present inbaterial genomes. Indiret and suboptimal ontrol might also evolve more rapidly than adaptive diret on-trol. For example, spei� transription fators or spei� binding sites are not required to evolve onstitutiveor growth-regulated ontrol. Indiret ontrol by global regulators may also evolve rapidly: beause globalregulators are present at high onentrations, they will bind at low-a�nity sites that require relatively-littleinformation to speify (Sengupta et al , 2002; Lozada-Chávez et al , 2008), so these sites should evolve morereadily than binding sites for other regulators (Stone and Wray, 2001; Berg et al , 2004).Our theory rests on the empirial observation that baterial genomes have far more operons than tran-sription fators. For example, S. oneidensis MR-1 has 4,467 protein-oding genes and around 2,800 tran-sription units but only 243 transription fators (5.4% of proteins). What limits the number of transriptionfators in baterial genomes? There is a roughly linear relationship between the number of proteins enodedby a baterial genome and the proportion of genes that enode transription fators (van Nimwegen, 2003).The relatively small number of transription fators in smaller baterial genomes suggests that the bene�tsof additional ontrol would be less than the osts or would be too small for seletion to operate. This mightre�et the adaptation of bateria with small genomes to narrow nihes. For example, we found little orre-lation between relative expression and �tness in Z. mobilis ZM4, whih utilizes only three di�erent arbonsoures and has just 65 transription fators among its 1,892 protein-oding genes. In bateria with largegenomes, transription fators are often aquired by horizontal gene transfer (Prie et al , 2008), but the a-quisition of additional transription fators might be limited beause transription fators that have similarDNA binding preferenes will interfere with eah other (similar to the theory of (Itzkovitz et al , 2006)). Ifthe aquisition of a transription fator that senses the relevant signal is seleted against, it might take along time for a new sensor to evolve.Alternative explanations for suboptimal ontrolAlthough we onsidered several other explanations for suboptimal ontrol, suh as standby ontrol, antii-patory ontrol, or weak seletion on gene regulation, we do not believe that they are su�ient to aountfor our results. First, if genes are under standby ontrol and are expressed when they are not important for13



�tness beause they might be needed in the future, then they should still be somewhat downregulated whenthey are not useful (Supplementary Figure 1), but this is not what we found. Conversely, we found thatgenes are not downregulated when they are detrimental to �tness. Seond, we looked for evidene that S.oneidensis MR-1 uses one ondition to antiipate growth in another ondition, but we found little evideneof it. Furthermore, antiipatory ontrol is predited to our along with adaptive ontrol and to have smallere�ets on expression patterns (Mithell and Pilpel, 2011). Third, although weak seletion might explain whysome of the weakly-expressed genes are onstitutive, we found that many genes are strongly detrimental to�tness in some onditions and that many of the other genes with apparently suboptimal expression patterns(i.e., growth regulation and/or no orrelation between expression and �tness) are highly expressed. Theregulation of these genes should be under strong seletion.Another explanation for suboptimal ontrol and a weak orrelation between expression and �tness is thatmany promoters are poorly �insulated� from environmental fators (Sasson et al , 2012). Even if genes areregulated by transription fators that sense funtionally-relevant signals, their expression also �utuatesdue to irrelevant di�erenes in environmental onditions (Sasson et al , 2012). For example, their promotersmight bind other transription fators at weak sites that evolve neutrally and are not deleterious enough forseletion to remove them (Lynh, 2007). Or the onentration of ative transription fator might �utuatedue to fators besides the signal that the transription fator senses.Poor insulation is like indiret ontrol in that the gene's expression responds suboptimally to irrelevantsignals, but the e�et is proposed to evolve neutrally rather than in response to environmental orrelations.We expet poor insulation to redue the orrelation between when a gene is important for �tness and whenit is more highly expressed, but we are not sure that it an explain why most genes show no orrelation atall. We also showed that onstitutive expression and regulation by growth rate are widespread, whih doesnot �t the insulation theory. Furthermore, we found that many genes an be detrimental to �tness, whihimplies strong seletion on misregulation, whih should remove the interfering sites. On the other hand,when we onsidered genes that have a lose funtional relationship but are not in the same operon, we sawmore oexpression than we might expet from the slight orrelation between expression and �tness for mostgenes (e.g., ompare Figure 3C and 3D). This might be explained by poor insulation � if two promoters areresponding to transription fators that sense relevant signals, but the onentrations or ativities of thosetransriptions fators are a�eted by irrelevant hanges in growth onditions, then expression from thosepromoters would be well-orrelated with eah other yet �tness-expression orrelations would be modest.Another possible reason for the weak orrelation between expression and �tness is that optimal ontrolrequires omplex ombinatorial regulation. Among genes with haraterized regulation in E. oli (Gama-Castro et al , 2011), 962 of 1,641 genes (59%) are regulated by more than one transription fator. Onepossible reason for why ombinatorial ontrol is widespread is to make up for the relatively limited numberof sensors. We speulate that ombinatorial logi might perform poorly in laboratory onditions. Forexample, even if the sensed signals are funtionally relevant, the way in whih they are ombined might beadapted to natural onditions. We also suspet that ombinatorial ontrol implies a rugged �tness landsapefor seletion on the promoter region, whih might make it di�ult for optimal ontrol to evolve.Overall, we have shown that the regulation of most baterial genes is not adaptive, at least not astraditionally understood to involve responding to a physiologially-relevant signal. In S. oneidensis MR-1,we found that almost half of genes are under suboptimal ontrol in the laboratory, while far fewer are underadaptive ontrol. To further understand the eologial role of baterial gene regulation, we will need tomeasure �tness and expression under more natural onditions.Materials and methodsFitness and expression data for S. oneidensis MR-1We olleted mathing mutant �tness and gene expression data for S. oneidensis MR-1 (ATCC 700550) in 15onditions: aerobi growth in Luria-Bertani broth; aerobi growth in de�ned minimal media with 8 di�erentarbon soures (20 mM D,L-latate, 20 mM pyruvate, 10 mM aetate, 20 mM N-aetylgluosamine (NAG),5 mg/mL mixed amino aids (CAS), 1 mg/mL gelatin, 0.5% Tween-20, or 7.5 mM inosine); aerobi growthin de�ned latate medium with four di�erent stresses (70 µM opper(II) hloride; 1 mM sodium nitrite; 1.5
µM nalidixi aid, an inhibitor of DNA gyrase; or aid stress at pH 6); and anaerobi growth in a de�ned14



medium with 20 mM D,L-latate or 20 mM NAG as the arbon soure and 30 mM fumarate as the eletronaeptor. Our de�ned medium ontained 30 mM PIPES bu�er, salts (1.5 g/L NH4Cl, 0.1 g/L KCl, 1.75 g/LNaCl, 0.61 g/L MgCl2·6H20, 0.6 g/L NaH2PO4), Wolfe's vitamins, and Wolfe's minerals, at pH 7. For thestress experiments, the arbon soure was 20 mM D,L-latate. For growth at pH 6, we used 30 mM MESbu�er instead of PIPES. All S. oneidensis MR-1 samples were grown at 30◦C with shaking at 200 rpm.For eah ondition, we olleted gene expression data from wild-type ells and �tness data from two poolsof transposon mutants, and all three ultures for a given ondition were initiated at the same time with thesame media. Samples for gene expression were olleted in exponential phase, and samples for �tness wereolleted after 6-8 doublings of the population. In pilot experiments, it made little di�erene whether weolleted �tness data in late exponential phase or in stationary phase (data not shown).For three onditions, we also measured gene expression during bath growth. We olleted ells at varyingtimes after inoulation of bath aerobi growth at OD600 of 0.1 on minimal latate medium (7 samples andmaximum OD=0.55), minimal NAG medium (6 samples and maximum OD=1.6), and LB (7 samples andmaximum OD=4.0).For �tness experiments, strain abundane was quanti�ed using a miroarray as desribed previously(Deutshbauer et al , 2011). Brie�y, we extrated genomi DNA, used PCR to amplify the tags that �barode�eah strain, hybridized the ampli�ed tags to a A�ymetrix 16K TAG4 array, and sanned the array (Piereet al , 2007). Eah strain's barode atually ontains two di�erent tags � we ampli�ed the �uptags� from onepool and the �downtags� from the other pool, mixed them together, and hybridized them to one array.Fitness values for eah strain were omputed from the log2 ratio of abundane after growth versus thestart of the experiment. Fitness values for eah gene were the average of the per-strain values. Beausewe use two pools of mutants that are grown and assayed separately, and beause some strains are presentin both pools, we an verify the reliability of a �tness experiment by asking whether strains gave similarvalues from both pools. We quanti�ed this by looking at the orrelation of these strains' �tness values arossthe two pools. In our typial �tness experiment for S. oneidensis MR-1, the orrelation of strain �tnessvalues was 0.92, and all experiments had orrelations above 0.8 exept for NAG/fumarate (r = 0.66). Inthe NAG/fumarate experiment, pairs of genes in the same operon did have well-orrelated �tness values(r = 0.66, as ompared to r = 0.63 in our typial experiment).We believe that the phenotypes of these mutants are usually due to the loss of protein funtion. First,for 1,646 of the genes, we have �tness data for strains with insertions at more than one loation within thatgene, and the �tness data for di�erent insertions within a gene are quite onsistent (r = 0.87 to 0.97 inthe 15 experiments). Seond, we previously omplemented 10 of these mutants, inluding seven insertionswithin hypothetial proteins (Deutshbauer et al , 2011). Third, a aveat in using mutants with transposoninsertions is that the phenotype an be due to polar e�ets, in whih the mutation in an upstream gene a�etsthe expression of downstream genes in an operon. We previously showed that insertions within upstreamgenes often lak the phenotypes of insertions within downstream genes, whih suggests that polarity is nota dominant fator in these pools of mutants (Deutshbauer et al , 2011). Also, for studying whether theexpression pattern of an operon is adaptive or not, it is not essential to know whih gene in the operon isresponsible for the observed phenotype.To quantify gene expression, we used a 12-plex Nimblegen miroarray in whih eah setor has 122,643spots and 40,881 distint probes as desribed previously (Deutshbauer et al , 2011). Brie�y, we usedRNAProtet (Qiagen), isolated total RNA (RNAeasy mini kit, Qiagen), prepared �rst-strand labeled DNA(SuperSript Plus Indiret DNA Labeling Module, Invitrogen), and hybridized the labeled DNA to themiroarray aording to Nimbelegen's instrutions. Within eah experiment, the log-level of expression ofgenes in the same operon was highly orrelated (r = 0.75-0.88 for mathing experiments, but growth urveexperiments had values as low as 0.62). Furthermore, in eah omparison of gene expression between aerobigrowth in latate and one of the other 14 mathed onditions, the log-ratios of genes in the same operonwere highly orrelated (r = 0.80 − 0.90).Compendium of expression data for S. oneidensis MR-1We obtained 371 expression experiments from the MirobesOnline web site (Dehal et al , 2009), derivedprimarily from (Liu et al , 2005; Faith et al , 2008; Deutshbauer et al , 2011) and similar works. We removedexperiments and genes with a high proportion of missing values, leaving data for 3,844 genes aross 32915



experiments.Constitutive and growth-regulated genes in S. oneidensis MR-1We lassi�ed genes as onstitutive if the standard deviation of their log2 expression ratios, aross 329 on-ditions, was under 0.5. Although this threshold is somewhat arbitrary, it was validated by the �nding thatfew of these genes are predited to be regulated by spei� fators.To identify growth-regulated genes, we examined the expression patterns of 24 essential protein ompo-nents of the ribosome (rplBCDFJLMNORTWX and rpsBEHIJLMNPQS). As expeted, these genes are quiteoexpressed, with a median pairwise orrelation of 0.83. We used the average expression pro�le of these ribo-somal genes to identify other putatively growth-orrelated genes. Spei�ally, we identi�ed 391 genes whoseoexpression with the pro�le is above 0.5, inluding all of the original 24 genes. These �growth-regulated�genes are only slightly less likely than other genes to be regulated by spei� transription fators aordingto RegPreise (10.7% vs. 14.4%, P = 0.054, Fisher exat test). Nevertheless, we an on�rm that they aregrowth-regulated by examining their promoter sequenes. In E. oli and presumably in S. oneidensis MR-1as well, the growth regulation of ribosomal protein genes is mediated by the alarmone ppGpp and the DksAprotein as part of the stringent response (Lemke et al , 2011). DksA binds to RNA polymerase and altersthe e�ieny of transription initiation depending on various fators inluding the onentration of the �rst(initiating) nuleotide and a GC-rih �disriminator� between the -10 box and the initiation site (Paul et al ,2004; Travers, 1980; Haugen et al , 2006). We used a ombination of high-resolution �tiling� miroarrays and5' RNA-Seq to map the exat 5' ends of transripts for 1,236 genes or operons from S. oneidensis MR-1 (seebelow). We found a substantial di�erene in the initiating nuleotides between growth-regulated and othertransripts: just 25% of growth-regulated transripts begin with adenosine, while 51% of other transriptsdo (P < 10−7, Fisher exat test). The putative growth-regulated promoters also have a higher GC ontentat positions -4 to -1 than other promoters do (68% vs. 55%, P < 10−5, t test). Thus, many of the putativegrowth-regulated promoters in S. oneidensis MR-1 are a�eted by the stringent response.Transript strutures of S. oneidensis MR-1We grew S. oneidensis MR-1 in minimal latate media and olleted high-resolution �tiling� miroarray dataand performed RNA sequening targeting the 5' ends of transripts, using protools desribed previously(Prie et al , 2011). Brie�y, we extrated RNA from frozen ell pellets using RNeasy miniprep olumns withDNase treatment (Qiagen), on�rmed RNA quality with Agilent bioanalyzer, and depleted ribosomal RNAwith MICROBExpress kit (Ambion). For the tiling experiment, we then reated labeled �rst-strand DNAwith SuperSript (Invitrogen) to hybridize to an a miroarray (Nimblegen) with 2.01 million probes of 60nuleotides eah. For the 5' RNASeq experiment, we used terminator 5'-phosphate-dependent exonulease(Epientre) to remove degraded transripts, onverted 5'-triphosphate to 5'-monophosphate ends with RNA5' polyphosphatase (Epientre), ligated adapters onto the 5' end with T4 RNA ligase (Ambion), used randomhexamer primers that also inluded a sequening adaptor to reate DNA, and used PCR ampli�ation toenrih for DNA that ontained both adaptors (see (Prie et al , 2011) for details). The 5' RNA-Seq data(Illumina) gave 21.5 million reads that mapped uniquely to the genome. To identify transript starts,we ombined loal peaks in the 5' RNA-Seq data with sharp rises in the tiling data (Prie et al , 2011).Spei�ally, we used loal peaks in the 5' RNA-Seq data that had at least 50 reads and we required thesestarts to be within 30 nuleotides of a sharp rise in the tiling data that had a loal orrelation to a stepfuntion (Güell et al , 2009) of at least 0.8. We assoiated a transript start with a gene if it was up to 200nuleotides upstream of the 5' end of the gene. For transript start analyses, we onsidered only genes onthe main hromosome.Fitness and expression data for Z. mobilis ZM4Our standard growth ondition for Z. mobilis ZM4 (ATCC 31821) was aerobi growth at 30◦C in a rihmedium with 25 g/L gluose, 10 g/L yeast extrat, and 2 g/L KH2PO4. We olleted �tness and expressiondata for Z. mobilis ZM4 grown in this ondition and with various inhibitory ompounds added, namely 0.45%furfuryl alohol, 4 mM 4-hydroxybenzaldehye, 5-10 mM 3-hydroxybenzoi aid, 7% ethanol, 0.09%-0.12%16



aeti aid, 0.2% aeti aid, 7.5 mM 5-hydroxymethylfurfural, 1% butanol, 9.9-12.5 mM furoi aid, 17-26mM levulini aid, 0.1-0.2 M NaCl, 3-6 mM hydroquinone, 0.0004-0.00055% hydrogen peroxide, 2.5 mMvanillin, or a omplex stress provided by 6-8% hydrolyzed plant material. Some of the onentrations aregiven as ranges beause the �tness experiments were done at more than one onentration or at a di�erentonentration from the expression experiments. If the �tness experiments were done at more than oneonentration or more than one then we averaged them. The orrelation of the per-gene �tness values fromexperiments with di�erent onentrations of the same inhibitor was usually above 0.8, with one exeption.We also olleted �tness and expression data for growth in rih media at 37◦C and for growth at 30◦Cin a de�ned medium ontaining 20 g/L gluose, salts, and vitamins (Goodman et al , 1982). Fitness wasmeasured using a similar approah as in S. oneidensis MR-1; the two pools of transposon insertions that weused will be desribed in more detail elsewhere (J.M.S. et al., submitted). Most of the �tness experimentsfor Z. mobilis were part of this other study; the �tness experiments that are spei� to this study were for7% ethanol, 1% butanol, and growth at 37◦C. In the typial experiment for Z. mobilis ZM4, the orrelationof strain �tness values between the two pools was 0.94, and all experiments had orrelations above 0.8. Wemeasured gene expression with a miroarray from Nimblegen with 51,851 probes for 1,882 genes, using thesame protools as for S. oneidensis MR-1. Within eah experiment, the log-level of expression of genes in thesame operon was orrelated (r = 0.58-0.82). Also, for eah experiment, the log-ratio of expression betweenthat ondition and the rih media ontrol was orrelated for genes in the same operon (r = 0.59-0.79).Constitutive and growth-regulated genes in Z. mobilis ZM4We onsidered genes in Z. mobilis ZM4 to be onstitutively expressed if the standard deviation of theirabsolute expression level, aross our 18 onditions, was under 0.2. This aounted for 117 genes (7% of thegenes that we had both expression and �tness data for). We identi�ed growth-regulated genes by takingthe average expression pro�le of 48 ribosomal proteins and identifying genes that were oexpressed with thispro�le (r > 0.5). This seleted 352 genes (22% of the genes that we had both expression and �tness datafor).Fitness and expression data for D. alaskensis G20We grew D. alaskensis G20 (provided by Terry Hazen, University of Tennessee, Knoxville) anaerobially at30◦C in a de�ned latate-sulfate medium (LS4D) and in a similar medium supplemented with yeast extrat(LS4), as desribed previously for D. vulgaris Hildenborough (Prie et al , 2011). We olleted �tness datausing a similar approah as in S. oneidensis MR-1; the two pools of transposon insertions that we usedwill be desribed in more detail elsewhere (J.V.K. et al., in preparation). Unlike in S. oneidensis MR-1 orZ. mobilis ZM4, we used separate hips to assay the two pools for a given ondition: for eah sample, weampli�ed both the uptags and the downtags and we hybridized those to the same array. We averaged thelog2 intensities of the up- and down-tags together before further proessing. In both rih and minimal media,strain �tness was highly onsistent between the two pools (r = 0.94 and r = 0.97, respetively).We measured gene expression in D. alaskensis G20 with a high-resolution �tiling� miroarray (Nimblegen)with 2.1 million 60-mer probes, using the same protools as with the S. oneidensis MR-1 tiling array. Weonsidered only probes for the oding strand of genes, we used quantile normalization to put the two data setsinto the same distribution, and we averaged the normalized log2 intensities aross the probes for eah gene.Genes in the same operon had highly-orrelated expression di�erenes between rih and minimal medium(r = 0.87).Analysis of mutant �tness dataIn previous work on �tness data from S. oneidensis MR-1 (Deutshbauer et al , 2011), we normalized the�tness values so that the median strain had a �tness of zero. Beause there an be di�erential e�ieny inextrating DNA of di�erent sizes, we did this separately for the main hromosome and the megaplasmid. Wehad found that some experiments had signi�ant e�ets depending on whih miroplate the strain was grownon during assembly of the pools, so we also normalized the data so that eah �pool plate� had a median17



�tness of zero. Here, we used pool-plate normalization for S. oneidensis MR-1 and for Z. mobilis ZM4, butit was not needed for D. alaskensis G20.We also identi�ed a small trend by hromosome position in some �tness experiments. Spei�ally, therewas sometimes a orrelation between �tness and the distane from the origin of DNA repliation. This mightresult from olleting the start and end samples at di�erent growth stages � if the ells are rapidly dividingthen the area near the origin of repliation will be at higher opy number. To remove this e�et, for strainson the main hromosome, we omputed a smooth estimate of how the �tness of eah strain varied withhromosomal position (using the loess funtion in R) and we subtrated this from the �tness values.It appears that the median gene in Z. mobilis ZM4 has a �tness defet in most onditions. For example,in all of our experiments, the median �tness of genes with annotated funtions was below the median �tnessof purely hypothetial proteins. This might re�et its relatively small genome (1,892 proteins). Thus, settingthe median gene's �tness to zero was not appropriate. Instead, for genes on the main hromosome, we setthe mode of the distribution to zero. (More preisely, we estimated the mode by �nding the maximum ofthe kernel density, using the density funtion in R with default settings, and we subtrated the mode fromthe values.) Mode-based entering typially lowered the �tness values by around 0.1. We used mode-basedentering for S. oneidensis MR-1 and D. alaskensis G20 as well, although it made less di�erene for thoseorganisms.To identify genes with strong e�ets on �tness, we used a threshold of ±0.75. A �tness of ±0.75 or-responds to around a 7% hange in abundane per generation. E�ets above this magnitude were usuallystatistially signi�ant. For example, in the 15 mathed experiments in S. oneidensis MR-1, genes with�tness e�ets of ±0.75 or stronger have |z| > 2 in 83%-99% of ases (95% in the median experiment).Fitness z sores were omputed as desribed previously. Brie�y, we used a t-like test statisti for eahgene to summarize the onsisteny of the measurements for its strains. This statisti also takes into aounthow noisy the data for other genes appears to be. Then, we transformed the test statisti to �t the standardnormal distribution by using ��tness� data from ontrol experiments in whih we independently reoveredthe pools from the freezer and assayed their relative abundane (Deutshbauer et al , 2011).To identify genes with more subtle but reproduible e�ets on �tness, we grouped together experimentswith similar patterns (those having a pairwise orrelation of above 0.75). For eah group, we used Fisher'smethod to ombine the signi�ane of genes (as assessed using z sores). For eah gene, we orreted formultiple testing aross groups.Statistial toolsAll statistial analyses were onduted in R 2.11 or 2.13 (http://r-projet.org/). Data was visualized in Rand in MirobesOnline (Dehal et al , 2009).Data availabilityAll �tness data is available in MirobesOnline (http://mirobesonline.org/). Fitness data for S. oneidensisMR-1 is also availabe as Dataset 1. All gene expression, tiling, and 5' RNA-Seq data are available in theGene Expression Omnibus, inluding expression data for S. oneidensis MR-1 (GSE39462), tiling data for S.oneidensis MR-1 (GSE39468), 5' RNA-Seq data for S. oneidensis MR-1 (GSE39474), expression data for Z.mobilis ZM4 (GSE39466), and tiling data for D. desulfurians G20 (GSE39471). All data and soure odeare available from the authors' web site(http://genomis.lbl.gov/supplemental/exprV�tness2012/).AknowledgementsWe thank Daia Leon, Dan Tarjan, Keith K. Keller, Jason K. Baumohl, and Marin P. Joahimiak for teh-nial assistane, and Paramvir S. Dehal for helpful disussions. We thank the Energy Biosienes Institutefor providing the mutant olletion for Z. mobilis ZM4. This work onduted by ENIGMA was supported bythe O�e of Siene, O�e of Biologial and Environmental Researh, of the U. S. Department of Energyunder Contrat No. DE-AC02-05CH11231. The funders had no role in study design, data olletion andanalysis, deision to publish, or preparation of the manusript.18
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Figure 1 In Shewanella oneidensis MR-1, genes that are detrimental to �tness are highly expressed. (A)Absolute expression level and mutant �tness during aerobi growth in minimal latate medium. The mediangene's expression is set to 0. Genes with signi�ant �tness e�ets (|z| > 2.5) are olor-oded. The dottedvertial line at 0.75 demarates seven strongly-detrimental genes. (B) In all 15 onditions, genes that aredetrimental to �tness (z > 2.5) tend to be expressed more highly than the typial gene. The vertial lineshows the proportion that we would expet by hane (50%). NAG is N-aetylgluosamine and CAS isasamino aids. Error bars are 95% on�dene intervals (binomial test).
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Figure 2 In Shewanella oneidensis MR-1, di�erential �tness and relative expression are poorly orrelated.(A) Relative expression versus the di�erene in �tness for aerobi growth on aetate versus aerobi growthon latate. Genes are olor-oded if they are important for �tness on aetate or latate but not the otherondition (spei�ally, if �tness is below -0.75 in that ondition but not in the other ondition and if thedi�erene in �tness between the onditions is at least 1.0). (B) Another view of the relative expression frompanel A: the distribution of relative expression for genes that are only important on aetate, only importanton latate, or other genes. Out-of-range values are inluded in the left- or right-most bins. The vertial linesshow the averages for genes that are important only in aetate (in red) or only in latate (in green). Theaverage upregulation of these two types of genes di�ers by 0.39 and the distributions overlap onsiderably(D = 0.23). (C) The hange in expression of di�erentially-�t genes in eah of 14 onditions when omparedto aerobi latate. Eah omparison is performed as in panel B: the x axis shows the di�erene between thetwo averages and the y axis shows the Kolmogorov-Smirnov D statisti for how distint the two distributionsare. The arrow highlights the omparison between aetate and latate from panel B. (D) Relative expressionversus the di�erene in �tness for ells growing in minimal latate medium with or without opper added.20
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Figure 3 In Shewanella oneidensis MR-1, few genes are under adaptive ontrol. (A) Absolute expressionversus �tness for tyrA and purH aross 15 growth onditions. The lines show the best �t for eah gene: tyrAtends to be expressed more highly when it is more important for �tness (r = −0.50), but purH does not(r = −0.01). (B) The distribution of �tness-expression orrelations, omputed as in panel A, for 3,247 genesand for 3,247 shu�ed ontrols. (C) The distribution of oexpression, aross 329 experiments, of pairs ofgenes that are not in the same operon and have losely-related funtions (i.e., mathing TIGR subroles andsimilar patterns of mutant �tness aross 195 experiments). We also show the distribution of oexpressionfor genes that are predited to be in the same operon, as a positive ontrol, and for random pairs of genesthat have di�erent TIGR subroles and are not adjaent or predited to be in the same operon, as a negativeontrol. (D & E) The distribution of �tness-expression orrelations (as in panel B) when onsidering onlygenes that have �tness of above 0.75 or below -0.75 in at least one of the 15 onditions. In (D), we separateout onstitutive and growth-regulated genes from other genes, and the green arrow highlights the adaptiveregulation of some of the other genes. In (E), the genes are lassi�ed by their TIGR roles, whih highlightsthe adaptive ontrol of amino aid synthesis genes but not other genes.21
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Figure 4 Biosyntheti pathways are upregulated in minimal media in some bateria but not in others.We examined whether auxotrophs were upregulated in minimal media, as ompared to other genes, in (A)Esherihia oli K-12; (B) Shewanella oneidensis MR-1; (C) Zymomonas mobilis ZM4; and (D) Desulfovibrioalaskensis G20. In all four organisms, the auxotrophs are annotated by TIGR role as being involved in aminoaid, nuleotide, or ofator synthesis, and experimental data on�rms that they are important for growthin a de�ned medium but not in rih medium. For E. oli K-12, we used growth data of deletion mutantsfrom the Keio olletion (Baba et al , 2006) and expression data from (Allen et al , 2003). For the otherorganisms, we olleted �tness data using pooled transposon mutants and we olleted gene expression datausing miroarrays. Genes were onsidered important only in de�ned medium if their �tness was below -0.75in de�ned medium but not in rih medium and the di�erene in �tness was at least 1. The expression log2ratios are normalized so that the median value is 0. Log2 ratios that are below -2 or above 2 are inluded inthe left- or right-most bins, respetively.
22



Figure 5 Adaptive, low-ost, or suboptimal ontrol of genes in Shewanella oneidensis MR-1. Among thegenes with both �tness and expression data, we lassi�ed their ontrol by the following riteria. If a gene �tinto multiple ategories, it was ounted only in the �rst (top-most) ategory. First, we lassi�ed genes as beingunder adaptive ontrol if the �tness-expression orrelation, aross 15 mathed onditions, was under -0.5. Weused a threshold of -0.5 beause this is roughly where the atual distribution of �tness-expression orrelationsdiverges from the shu�ed distribution (Figure 3B); also, 53% of amino aid synthesis genes are below thisthreshold. We lassi�ed genes as onstitutive and low ost if they had a low standard deviation of expression(in a large ompendium), they were not detrimental to growth (in 38 groups of �tness experiments), and theirabsolute expression level was at most 2-fold above the median gene in all of our 15 onditions. Genes thatare signi�antly detrimental to growth in one or more of 38 groups of �tness experiments were sub-lassi�edinto genes that are important for motility (motility ��tness� below -0.4), sel�sh genes suh as transposons,prophages, and restrition elements, or other unexplained genes. Genes were onsidered to hange expressionwithout being important for �tness if, in any of 14 omparisons between onditions, the expression hangedby two-fold or more but the �tness value was between -0.4 and 0.4 in both onditions. The remaining geneswere lassi�ed as having little phenotype or hange in expression if their �tness value was between -0.75 and+0.75 in all 15 mathed onditions.
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Supplementary Figure 1 � Optimal ontrol under onstant or unpreditably-varying onditions.We onsider a protein with a maximum bene�t (not inluding the ost of expression) of 0.2 per generationand whih reahes half-maximal bene�t at 0.0005 of protein (solid green line). The parameters are arbitrary,but we assume that the bene�t of the protein saturates beause this arises naturally in metaboli modelsand has been on�rmed experimentally (D. Fell, �Understanding the Control of Metabolism,� PortlandPress, 1997). (Intuitively, one a metaboli enzyme is highly expressed, inreasing its expression furtherwill inrease the onentration of its produt, but unless the expression of downstream enzymes is inreasedas well, downstream enzymes will beome saturated and total �ux through the pathway will only inreaseslightly.) We onservatively assume that the protein has no detrimental ativity when unneeded and thatits ost of protein prodution is equal to the amount of protein (blue line). (A) Optimal adaptive ontrolwhen onditions rarely hange. The optimum expression maximizes bene�t minus ost (green irle), andthe �tness ost of disabling the protein is the di�erene between the two (red arrow). But when the proteinis not bene�ial, the optimal expression level is 0. (B) Optimal �standby� ontrol under unpreditablyvarying onditions. We onsider two situations with unpreditable future hanges in onditions. In the �rstsituation, the protein is urrently bene�ial, but this may not ontinue, so on average, the bene�t is just80% of the bene�t under onstant onditions (dashed green line). In the seond situation, the protein isurrently not bene�ial, but onditions may hange, so on average, the bene�t is 20% of the bene�t underonstant bene�ial onditions (dotted green line). The expression level that maximizes bene�t minus ost ineah situation is shown (green irles). The range of expression is less than in (A), but the expression levelstill hanges (blak arrow). Intuitively, beause the ost of expressing a small amount of unneeded proteinis small relative to the potential bene�t, it is bene�ial to gamble on making a small amount of the protein.And beause of diminishing returns to making more of the protein, the optimal expression level is higherwhen the bene�t is higher. However, under onstant onditions with no bene�t, standby expression of theprotein inurs a ost and �tness is redued (red line).
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